T-SQL Tuesday #173 – Has AI Helped You with Your SQL Server Job?

Invitation from Pinal Dave.

Hello, SQL Server enthusiasts! It’s time for another exciting edition of T-SQL Tuesday, and I’m thrilled to be your host for this month’s episode – Has AI Helped You with Your SQL Server Job?

As database professionals, we’re always looking for ways to improve our efficiency and effectiveness in our daily tasks. With the rapid advancements in artificial intelligence (AI) and machine learning (ML), many of us have started exploring how these technologies can assist us in our SQL Server jobs.

Your task for this month: write a blog post about how AI has helped you in your role as a SQL Server professional, and schedule it for next Tuesday, April 9.

Here are some ideas to get you started:

  • Have you used AI-powered tools to optimize your SQL queries? Share your experience and the results you achieved.
  • Has AI assisted you in detecting and resolving performance issues in your SQL Server environment? Tell us about the tools you used and the insights you gained.
  • Have you leveraged AI to improve your database design or data modeling processes? Discuss the techniques you employed and the benefits you observed.
  • Has AI helped you automate routine tasks, such as index maintenance or backup management? Share your automation journey and the time savings you achieved.

Remember, the goal is to share your personal experience and insights on how AI has impacted your work as an SQL Server professional. Don’t worry if you haven’t had a groundbreaking AI project; even small improvements and efficiency gains are worth celebrating and sharing with the community.

T-SQL Tuesday #162 – Data Science in the time of ChatGPT

Invitation from Tomaz Kastrun.

Instead of writing and asking Data science questions, let’s discuss the aspects of Data science with the presence of Chat GPT 4.0.

By now, it is known to everyone that Chat GPT is a language model (LLM – Large Language Model) that is based on the GPT (Generative Pre-trained Transformer) architecture. It uses deep learning algorithms to like neural nets with billions of weights and transformers, that generated the sequence of tokens, that make up a piece of text.Transformers introduce the concept of “paying attention” to generally build better sequence of text. It operates primarily with probabilities of words and their sequence and therefore it is also good for human-like responses to natural language queries, making it great for a conversation-like experience.

There are many of the caveats hidden in the processing of text, adjustments of weights, functions (different and tweaked versions of Relu), additional corpora and billions of text for model training and many additional texts.

I have prepared two groups of questions. And I will not go into debate, as the end of data science is near, nor will go into debate, that the AGI (artificial general intelligence) will completely replace the role of data scientists. What I want to hear from you is simply how did you embrace (if at all) the use of Chat GPT, and what were your first impressions. And mostly, how did it help you (if at all), what did you use it for, and have you encountered any traps?

Usage and working along Chat GPT

Imagine using SQL, R, Python, Julia, or Scala, for your daily data science work. And you can practically ask Chat GPT anything and it will return you a relatively coherent and good answer. If you need an explanation, it will excel. Where and what have you used it for? Here is a short list, that might get you started:

  1. Explain the data science algorithn?
  2. Help tune or create SQL code to query big data
  3. Prepare R, Python, Scala code for exploring the data
  4. Help you prepare the training of the model in desired language
  5. Prepare the code for hyperparameter tunning and cross-validation
  6. Ask for data visualization for given dataset
  7. Help create dashboard
  8. Create code for model deployment, model re-training or model consumption
  9. Ask for preparing custom functions and algorithm/function adjustments?

Now, that you have added and found the list of where and how it did help you, I would like to understand, how did this help you? Feel free to make a general comparison and add some explanations. And lastly, of course, add, if this has in any kind of way compromise your work as a data scientist (in a term of embracing it in – a positive way, or in terms of a negative experience).

Responsible usage

We have seen many controversies around Chat GPT emerge. Some European Union countries have banned it, and some will so be doing it too. And the question is not only its use (as the end of humanity and empathy) but also the misuse of personal data, privacy issues and leaking of relevant, corporate information.

Have you considered responsible usage of Chat GPT? Here is again the short list for helping you:

  1. The use of personal data retrieved from the model
  2. Inserting sensitive (personal or company) data
  3. Explaining the section of R, Python, Scala code, that is the property of your enterprise

Instead of this, have you tried using it more responsibly:

  1. Using pseudo code for explanation of the algorithm
  2. Using mock data rather than real data
  3. Giving pseudo-code in order to receive the documentation
  4. Skipping on sensible data (SQL schema, model information, sensible data)

So which cases have you come across? Did it have any consequences for you? Which other responsible use of Chat GPT have you also done?

My takeaways

ChatGPT offers interesting answers (based on my experience and search), and it is the next step from a google search of Stackoverflow. In other words, it gives you a more focused answer. When exploring and searching forums, you might find several different solutions for a single problem, whereas here, you have to ask for another solution. And respectively, it can give you answer faster, in comparison to browsing the web. In both cases, both sides have their advantages and disadvantages, but non will assure you, that the answer is correct!

I embrace this technology as an additional learning source. But I personally do not use it as my daily driver, despite trying it out a couple of times (with mixed results; working and nonworking/useless/meaningless). It can be super helpful for entry/junior positions, but the more experienced you are, the more abstract data science work you and the more complicated topics you cover, less frequently you will presumably use it.

T-SQL Tuesday #160: Microsoft OpenAI Wishlist

Invitation and round-up from Damien Jones.

Introduction

Artificial Intelligence has been a big deal in recent months. One of the main drivers of this has been OpenAI, whose DALL-E 2 and ChatGPT services have seen extraordinary public interest and participation.

ChatGPT is currently the fastest-growing consumer application in history It reached 100 million users in its first two months, and has been integrated into numerous applications. One such example is the recent version of DBeaver that I tried out in my previous post.

Microsoft has been one of OpenAI’s most prominent supporters. In July 2019 Microsoft invested $1 billion in OpenAI and became their exclusive cloud provider.

In January 2023 Microsoft announced the latest phase of its multibillion-dollar investment partnership with OpenAI and the general availability of Azure OpenAI Service. Since then, Microsoft announced that it is building AI technology into Microsoft Bing, Edge and Microsoft 365.

My invitation for this month’s T-SQL Tuesday is:

What is on your wishlist for the partnership between Microsoft and OpenAI?

This can include all Microsoft products and services, like: